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How Frequency Augments Severity Information



Basic Terminology

I Claim - indemnification upon the occurrence of an insured
event

I Loss - some authors use claim and loss interchangeably, others
think of loss as the amount suffered by the insured whereas
claim is the amount paid by the insurer

I Frequency - how often an insured event occurs, typically within
a policy contract

I Count - In this chapter, we focus on count random variables
that represent the number of claims, that is, how frequently an
event occurs

I Severity - Amount, or size, of each payment for an insured
event



The Importance of Frequency
I Insurers pay claims in monetary units, e.g., US dollars. So, why

should they care about how frequently claims occur?
I Many ways to use claims modeling – easiest to motivate in

terms of pricing for personal lines insurance
I Recall from Chapter 1 that setting the price of an insurance

good can be a perplexing problem.
I In manufacturing, the cost of a good is (relatively) known
I Other financial service areas, market prices are available

I Insurance tradition: Start with an expected cost. Add "margins”
to account for the product’s riskiness, expenses incurred in
servicing the product, and a profit/surplus allowance for the
insurance company.

I Think of the expected cost as the expected number of claims
times the expected amount per claims, that is, expected
frequency times severity.
I Claim amounts, or severities, will turn out to be relatively

homogeneous for many lines of business and so we begin our
investigations with frequency modeling.



Other Ways that Frequency Augments Severity Information

I Contractual - For example, deductibles and policy limits are
often in terms of each occurrence of an insured event

I Behaviorial - Explanatory (rating) variables can have different
effects on models of how often an event occurs in contrast to
the size of the event.
I In healthcare, the decision to utilize healthcare by individuals is

related primarily to personal characteristics whereas the cost per
user may be more related to characteristics of the healthcare
provider (such as the physician).



Other Ways that Frequency Augments Severity Information
II

I Databases. Many insurers keep separate data files that
suggest developing separate frequency and severity models.
This recording process makes it natural for insurers to model
the frequency and severity as separate processes.
I Policyholder file that is established when a policy is written.

This file records much underwriting information about the
insured(s), such as age, gender and prior claims experience,
policy information such as coverage, deductibles and limitations,
as well as the insurance claims event.

I Claims file, records details of the claim against the insurer,
including the amount.

I There may also be a "payments” file that records the timing of
the payments although we shall not deal with that here.



Other Ways that Frequency Augments Severity Information
III

I Regulatory and Administrative
I Regulators routinely require the reporting of claims numbers as

well as amounts.
I This may be due to the fact that there can be alternative

definitions of an "amount,” e.g., paid versus incurred, and there
is less potential error when reporting claim numbers.



REVIEW

In this section, you learn how to summarize the importance of
frequency modeling in terms of

I contractual,
I behavioral,
I database, and
I regulatory/administrative motivations.



Basic Frequency Distributions



Frequency Distributions

I Frequency - how often an insured event occurs, typically within
a policy contract

I Discrete probability distributions, called count distributions,
model the number of losses to a policyholder or the number of
claims to an insurance company



Foundations
I Focus on frequency random variable N with support on

k = 0, 1, 2, . . .
I Probability mass function (pmf) is denoted as Pr(N = k) = pk
I Cumulative distribution function (cdf) is denoted as

Pr(N ≤ x) = F (x) =
{ ∑[x ]

k=0 pk , x ≥ 0
0, otherwise

I Summarize distribution through moments:
I Mean:

E (N) = µ =
∞∑

k=0
kpk

I Variance:

Var(N) = E (N − µ)2 = E (N2)− µ2 =
∞∑

k=0
k2pk −

( ∞∑
k=0

kpk

)2



Probability Generating Function
I Probability generating function (pgf) is:

P(z) = E (zN) =
∞∑

k=0
zkpk

I Taking the mth derivative, pgf “generates” probabilities:

P(m)(0) = ∂m

∂zmP(z)|z=0 = pmm!

I Further, pgf can generate moments:

P(1)(1) =
∞∑

k=0
kpk = E (N)

and
P(2)(1) = E [N(N − 1)]



Important Frequency Distributions

I Three important frequency distributions are:
I Poisson
I Binomial
I Negative binomial

I They are important because:
I They fit well many insurance data sets of interest
I They provide the basis for more complex distributions that even

better approximate real situations of interest



Poisson Distribution

I This distribution has positive parameter λ, pmf

pk = e−λλk

k!
and pgf

P(z) = M(ln z) = exp(λ(z − 1))

I Expectation is E (N) = λ, which is same as variance,
Var(N) = λ



Binomial Distribution

I This distribution has parameters m (positive integer) and
0 < q < 1, pmf

pk =
(
m
k

)
qk(1− q)m−k

and pgf
P(z) = (1 + q(z − 1))m

I k = 0, 1, 2, . . . , m
I Mean is E (N) = mq and variance is Var(N) = mq(1− q)
I If m = 1, called Bernoulli distribution
I As 0 < q < 1, we have Var(N) < E (N)



Negative Binomial Distribution

I This distribution has positive parameters (r , β), pmf

pk =
(
k + r − 1

k

)( 1
1 + β

)r ( β

1 + β

)k

and pgf
P(z) = (1− β(z − 1))−r

I Expectation is E (N) = rβ and variance is Var(N) = rβ(1 + β)
I If r = 1, called geometric distribution
I Var(N) > E (N)



REVIEW

In this section, we learned how to:

I Determine quantities that summarize a distribution such as the
distribution and survival function, as well as moments such as
the mean and variance

I Define and compute the moment and probability generating
functions

I Describe and understand relationships among three important
frequency distributions, the binomial, Poisson, and negative
binomial distributions



(a, b, 0) Class



(a, b, 0) Class

I Definition. A count distribution is a member of the (a, b, 0)
class if probabilities pk satisfy

pk
pk−1

= a + b
k ,

for constants a, b and for k = 1, 2, 3, . . .

I Only three distributions are members of the (a, b, 0) class:
I Poisson (a = 0),
I binomial (a < 0), and
I negative binomial (a > 0)

I Recursive expression provides a computationally efficient way to
generate probabilities



(a, b, 0) Class - Special Cases

I Example: Poisson Distribution.

I Recall pk = λk

k! e
−λ

pk
pk−1

= λk/k!
λk−1/(k − 1)!

e−λ

e−λ
= λ

k

a = 0, b = λ, and p0 = e−λ

I Example: Binomial Distribution. a = −q
1−q , b = (m+1)q

1−q , and
p0 = (1− q)m

I Example: Negative Binomial Distribution. a = β
1+β ,

b = (r−1)β
1+β , and p0 = (1 + β)−r



REVIEW

In this section, you learn how to:

I Define the (a, b, 0) class of frequency distributions
I Discuss the importance of the recursive relationship

underpinning this class of distributions
I Identify conditions under which this general class reduces to

each of the binomial, Poisson, and negative binomial
distributions



Estimating Frequency Distributions



Basic Problem

I Given a random sample from p on {0, 1, . . .}
I Unknown p
I Want to make good data-driven decisions

I Using a statistical model {pθ|θ ∈ Θ}
I An indexed set of distributions

I Assumed to contain p
I Estimating θ0 satisfying p = pθ0
I for optimal decision making

I Two simplifying features
I Observations in {0, 1, . . .}
I Θ is a Euclidean subset



Compression of Data

I x1, . . . , xn - sample from p on {0, 1, . . .}
I mk - number of observations equal to k
I Note that

∑
k≥0 mk = n

I In particular, atmost n many mk ’s are non-zero
I Justification for compressing data to mk ’s

I Likelihood Principle
I Sufficiency Principle



The Likelihood

I Likelihood - L(·)
I Function of parameter (index)

I L(θ) =
∏n

1 pθ(xi )
I Likelihood Principle

I All information on parameter is in L
I L(θ) =

∏n
i=1 pθ(xi ) =

∏
k≥0(pθ(k))mk

I Depends only on mk ’s
I Hence, reduction to mk ’s is lossless



Maximum Likelihood (ML) Estimation

I A simple statistical model - {p1, p2}
I Θ = {1, 2}.
I p1(3) = 0.8; p1(5) = 0.2
I p2(3) = 0.4; p2(5) = 0.6

I Data - x̃ = (3, 3, 5)
I L(1) = 0.82 · 0.21 = 0.128; L(2) = 0.42 · 0.61 = 0.096

I Observations more likley under p1
I MLE (of the parameter) is 1



ML Estimation - General Setup

I In general, MLE equals arg max L(θ)
I Log-likelihood l(·) given by
I l(θ) := log L(θ)

I As log is strictly increasing on (0,∞)
I arg max L(θ) = arg max l(θ)
I MLE computation often involves calculus

I Convenient to work with log-likelihood l(·)
I Constant factor drops off upon differentiation
I Numerically is more stable than likelihood



Plot of Likelihood and Log-likelihood - Plots

0e+00

1e−17

2e−17

3e−17

4e−17

Li
ke

lih
oo

d

Lo
g−

lik
el

ih
oo

d

−65

−60

−55

−50

−45

−40

−35

1.00 1.50 2.00 2.50 2.85 3.50 4.00 4.50 5.00

θ

Likelihood
Log−likelihood



MLE for Binomial and Negative Binomial



Binomial Model

I In frequency modeling, binomial is a two parameter model
I As m, apart from q, is taken to be unknown as well
I Unlike as presented in introductory statistics texts

I Log-likelihood l(m, q) equals
I
∑n

i=1 log
((m

xi

))
+ nx log(q) + n (m − x) log(1− q)

I x = n−1∑n
i=1 xi

I m takes only non-negative integer values
I For each fixed value of m, maximizing value of q satisfies

I q ·m = x
I m̂MLE = arg max

m≥max xi
l(m, x/m)

I q̂MLE = x/m̂MLE

I Caveat: m̂MLE =∞ if sample variance is at least sample mean
I In which case it suggests use of a Poisson model



Negative Binomial Model

I Negative Binomial model is a two parameter model
I Parameter r is taken to be strictly positive valued
I Unlike as presented in introductory statistics texts

I Log-likelihood l(r , β) equals
I l(r , β) =

∑n
i=1 log

(r+xi−1
xi

)
− n(r + x) log(1 + β) + nx log β,

I x = n−1∑n
i=1 xi

I r is non-negative
I For each fixed value of r , maximizing value of β satisfies

I β · r = x
I r̂MLE = arg max

r
l(r , x/r); β̂MLE = x/r̂MLE

I A good starting point for optimizer from method of moments
I r = x2/(sample variance − x)

I Caveat: r̂MLE =∞ if sample variance is at most sample mean
I In which case it suggests use of a Poisson model



Reason Behind non-existence of MLE
I The Poisson is in a sense on the boundary of both

I The set of Binomials
I m approaching infinity; constant mean

I The set of Negative Binomials
I r approaching infinity; constant mean

I But no binomial or a negative binomial is a Poisson
I So MLE for binomial and negative binomial

I Like maximizing an increasing function on an open interval
I h(·) on (0, 1) with h(x) = x2 does not attain a maximum value
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REVIEW

In this section, you learned how to:

I Define a likelihood for a sample of observations from a discrete
distribution

I Define the maximum likelihood estimator for a random sample
of observations from a discrete distribution

I Calculate the maximum likelihood estimator for the binomial,
Poisson, and negative binomial distributions



Other Frequency Distributions



Why do we need more frequency distributions?

I (a, b, 0) class consists of three distributions
I Binomial, Poisson and the Negative Binomial

I It is a two parameter family
I Hence, there are many more count distributions

I Two natural ways of extending this class
I Both are actuarially driven

I In a mathematical sense
I They are actuarially driven closure requirements



Heterogeneous Population

I When encountered with a heterogenous population
I Divide them into homogeneous subpopulations

I Actuaries commonly do so for risk rating
I Helps in statistical modeling too

I (a,b,0) often works well in modeling subpopulations
I Even when not at the population level

I Two distinct (a,b,0) subpopulations do not make a (a,b,0)
population



Visualizing Mixtures

I Consider a portfolio of policies
I Two sub-portfolios - sizes in the ratio 2:1
I Bin(2,1/4) and Bin(2,2/3) distributed

I Binomial with m = 2 determined by p1 and p2
I As p0 = 1− p1 − p2
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Visualizing Mixtures
I Consider a portfolio of policies

I Two sub-portfolios - sizes in the ratio 2:1
I Bin(2,1/4) and Bin(2,2/3) distributed

I Binomial with m = 2 determined by p1 and p2
I As p0 = 1− p1 − p2

I Binomial (m = 2) mixtures are in the shaded region
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Mixtures in General

I The above was a motivation for extension by mixing
I Mixture distribution is a convex combination of distributions

I Finitely or infinitely many components
I Section 2.5: mechanics of working with mixtures
I We next discuss another natural extension



Zero - Modification

I Employer provided insurance leads to redundant coverage
I An insured may not file claims on a policy

I Results in outsized proportion of zero claims
I ill-fitted by standard parametric families

I Like those in the (a, b, 0)-class
I For {pk}k≥0 a probability mass function

I Zero-modified version {qk}k≥0

qk =
{
q0, k = 0;
(1− q0) pk

1−p0
, k ≥ 1.

I q0 ∈ [0, 1] - adds an extra parameter in the extension
I Zero-modified versions of (a, b, 0) are practically well motivated
I Zero-truncated version is zero-modified with q0 = 0

I Conditional distribution of claims given at least one claim



Zero - Modification: Log plot of Prob. Mass Function

I Ratio pk+1/pk unchanged, for k ≥ 1
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Zero - Modification of (a, b, 0) class

I (a, b, 0) class defines, for k ≥ 0, the ratio

pk+1/pk = (1 + b/(k + 1))

I Zero-modification does not alter this ratio for k ≥ 1
I Zero-modified version of (a,b,0) distribution

I Satisfies same recurrence but starting from k ≥ 1
I (a, b, 1) class of distributions

I Those satisfying the previous recurrence for k ≥ 1
I p0 ≥ 0 is arbitrary, and p1 is chosen so that

∑
k≥0 pk = 1

I The parameter set equals p0, a and b



The (a,b,1) Class

I For the (a, b, 0)-class the valid values for (a, b)
I a < 0, and b ∈ {−a,−2a, . . .} - Binomial
I a = 0, and b ≥ 0 - Poisson
I a > 0, and a + b ≥ 0 - Negative Binomial

I When recurrence relation is restricted to k ≥ 1
I For a > 0, constraint a + b > 0 relaxes to a + b/2 > 0
I So (a,b,1)-class apart from zero-modified (a,b,0)-class includes

I Extended Truncated Neg. Binomial - a > 0, & −a > b > −2a
I Logarithmic Distribution - a > 0, and b = −a
I And their zero-modified version



REVIEW

In this section, you learned how to:

I Define the (a, b, 1) class of frequency distributions and discuss
the importance of the recursive relationship underpinning this
class of distributions

I Interpret zero truncated and modified versions of the binomial,
Poisson, and negative binomial distributions

I Compute probabilities using the recursive relationship



Mixture Distributions



Discrete/Finite Mixtures

I Suppose a population consists of several subgroups, each
having their own distribution

I Randomly draw an observation from the population, without
knowing from which subgroup we are drawing

I Suppose N1 represents claims from “good” drivers (GD) and
N2 claims from “bad” drivers (BD). We draw:

N =
{
N1 with prob α
N2 with prob (1− α).

I Here, α represents probability of drawing a “good” driver
I “Mixture” of two subgroups



Discrete Mixture Probability Mass Function

I For pmf

Pr(N = k) = Pr(N = k,GD) + Pr(N = k,BD)
= Pr(N = k|GD) Pr(GD) + Pr(N = k|BD) Pr(BD)
= Pr(N1 = k) Pr(GD) + Pr(N2 = k) Pr(BD)
= αpN1(k) + (1− α)pN2(k)

I Similar argument can be made for cdf



Discrete Mixture Example

Exercise. Exam "C" 170. In a certain town the number of common
colds an individual will get in a year follows a Poisson distribution
that depends on the individual’s age and smoking status:

Proportion of population Mean number of colds
Children 0.3 3
Adult Non-Smokers 0.6 1
Adult Smokers 0.1 4

I Calculate the probability that a randomly drawn person has 3
common colds in a year

I Calculate the conditional probability that a person with
exactly 3 common colds in a year is an adult smoker



Mixture Moments
I Start with the mean. Using law of iterated expectations:

E (N) = αE (N1) + (1− α)E (N2).

We can also write

N2 =
{
N2

1 with probability α
N2

2 with probability 1− α

Thus

E (N2) = αE (N2
1 ) + (1− α)E (N2

2 ).

Same argument holds for any moment



Continuous Mixtures

I Can extend mixture idea to an infinite number of subgroups
I Consider a population of drivers. The ith person has their own

Poisson distribution with expected number of claims, λi
I For some drivers, λ is small (better drivers), for others it is high

(worse drivers). There is a distribution of λ
I A convenient distribution for λ is a gamma distribution with

parameters (α, θ)
I One can check that if N|Λ ∼ Poisson(Λ) and if Λ ∼

gamma(α, θ):

N ∼ Negative Binomial(r = α, β = θ)



Continuous Mixtures II

I Consider a general framework for a continuous mixture:
I Let (N|Λ = λ) have pmf pN|Λ(k|λ) = Pr(N = k|Λ = λ)
I Let Λ have pdf fΛ(λ)
I Random draw:

pk = Pr(N = k) = EΛ[pN|Λ(k|Λ)] =
∫

λ
pN|Λ(k|λ)fΛ(λ)dλ

I Idea of above: first determine claim count pmf given a specific
value λ, then take expectation over all possible values of λ to
get claim count pmf for random draw

I Use the law of iterated expectations to calculate raw moments
of N, the law of total variance to calculate variance of N



REVIEW

In this section, you learned how to:

I Define a mixture distribution when the mixing component is
based on a finite number of sub-groups

I Compute mixture distribution probabilities from mixing
proportions and knowledge of the distribution of each subgroup

I Define a mixture distribution when the mixing component is
continuous



Goodness of Fit



The Goodness of Fit Problem

I We discussed a small subset of count distributions
I None of them may be a good/useful model for the data at hand

I Goodness of Fit Problem - determining if one is adequate
I Need for a method to make sound decision on the fit

I Introducing one such is the goal of the section
I We do so via an example



Example: Singapore Automobile Data

I A 1993 portfolio from a major insurance company in Singapore
I 7, 483 automobile insurance policies
I Policy level data - count variable is the number of accidents
I Maximum of 3 accidents per policy observed
I Average of 69.89 accidents per 1, 000 policies (N = 0.06989)

Observed Accident Counts per Policy

Count Observed
(k) (mk)
0 6, 996
1 455
2 28
3 4

Total 7, 483



Fitting a Poisson

I With the Poisson distribution
I The MLE of λ is λ̂ = N.
I Fitted probabilities p̂k below use λ̂
I Fitted counts are 7,483 times the fitted probabilities

I Created a cell for counts ≥ 4
I To account for remaining fitted probability

Table. Comparison of Observed to Fitted Counts

Count Observed Fitted Counts using the
(k) (mk) Poisson Distribution(np̂k)
0 6, 996 6, 977.86
1 455 487.70
2 28 17.04
3 4 0.40

≥ 4 0 0.01
Total 7, 483 7, 483.00



Adequacy of the Poisson Model

I For goodness of fit, consider Pearson’s chi-square statistic

∑
k

(mk − np̂k)2

np̂k
.

I Has an asymptotic chi-square distribution
I If the Poisson distribution is the correct model

I The degrees of freedom (df ) equals
I the number of cells minus one minus the number of estimated

parameters.
I For the Singapore data

I df = 5− 1− 1 = 3; 99-th %ile equals 11.34487
I The Pearson’s statistic equals 41.98 (> 11.34487)
I The basic Poisson model is inadequate

I In the exercise below, you will fit a zero-inflated Poisson



REVIEW

In this section, you learned how to:

I Calculate a goodness of fit statistic to compare a hypothesized
discrete distribution to a sample of discrete observations

I Compare the statistic to a reference distribution to assess the
adequacy of the fit
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